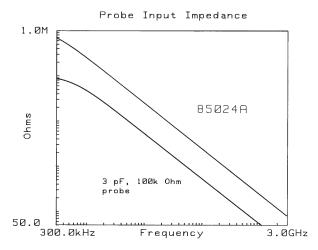
85024A High Frequency Probe 300 kHz to 3 GHz



Extend High Frequency Probing Applications

The Keysight Technologies Inc. 85024A high frequency probe offers excellent performance. The probe employs a GaAs IC to obtain extremely low input capacitance of only 0.7 pF shunted by 1 M Ω of resistance. Because of this low input capacitance, high frequency probing is possible without adversely loading the circuit under test. Also, the 1 M Ω shunt resistance guarantees minimal circuit loading at lower frequencies. Since the probe has excellent sensitivity, it is well-suited for use with analyzers offering exceptional dynamic range. The 85024A is an excellent accessory for high frequency test equipment, especially Keysight RF network or signal/spectrum analyzers which supply probe power from the front panel.

Probe with less error due to higher input impedance. For example, in a 50 Ω system at 500 MHz, the 85024A presents 455 Ω which produces a 10% signal loss from loading effects, while a 3 pF, 100 k Ω probe presents 106 Ω causing a 32% signal loss.

Signal/Spectrum Analysis

Troubleshooting RF and IF signal paths to identify problem areas in a system is convenient and accurate with an 85024A and a signal/spectrum analyzer. Measurements of frequency, power, modulation, distortion, conversion loss, and spectral purity are possible within a circuit. High sensitivity and low distortion levels ensure the probe's ability to detect small signals or search for spurious responses. In fact, the sensitivity of most 85024A applications is limited only by the noise floor of the spectrum analyzer itself. Add a tracking generator to easily perform swept in-circuit measurements.

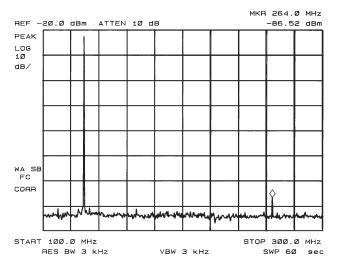


Figure 1. Troubleshoot IF paths for low level spurious responses.

Network Analysis

When used with a network analyzer, this versatile probe makes it easy to measure the gain, attenuation, phase linearity, or group delay of individual circuit stages. Also, investigate multi-stage circuits to rapidly determine the location of faults in a system. Low input capacitance and high shunt resistance minimizes the loading to the circuit under test. Excellent frequency response and unity gain of the Keysight 85024A guarantee high accuracy in swept measurements.

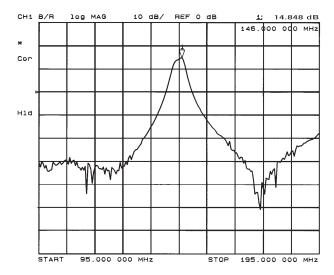


Figure 2. Excellent flatness maintains accuracy in swept measurements.

Advanced Design

Simplicity and reliability are inherent in the design of the 85024A. The front end was designed using a custom GaAs IC to provide low input capacitance. A retractable metal sleeve protects the probe from physical damage to the tip when not in use and, more importantly, from electrostatic discharge (ESD) damage to the probe. By retracting the metal sleeve, the user establishes himself at the same potential as the high frequency probe. Thus, it may be handled with less possibility of electrostatic damage. Finally, the entire probe front end is easily disassembled for quick replacement in the field.

A replaceable state-of-the-art GaAs IC provides high performance and extends the lifetime of the 85024A.

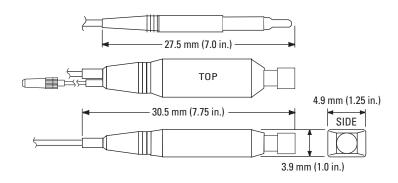
Compatible with Many Keysight Instruments

Direct compatibility with many RF analyzers further leverages the performance and flexibility of the 85024A high frequency probe.

For more information, go to:

- Signal analyzers: www.keysight.com/find/SA
- Network analyzers: www.keysight.com/find/NA

Specifications


Terminated with 11880-60001 type-N adapter

Specifications describe the warranted performance over the temperature range of 25 °C, \pm 5 °C (except where noted). Supplemental characteristics are intended to provide information useful in applying the instrument by giving unwarranted performance parameters. These are denoted as "typical," "nominal," or "approximate."

	Description
Input capacitance (at 500 MHz)	•
	< 0.7 pF (nominal)
Input resistance	
	1 $M\Omega$ (nominal)
Bandwidth	
	300 kHz to 3 GHz (nominal)
	Usable to 100 kHz
Average gain	
Average gain is defined as the average of the maximum and minimum gains over the frequency range of 300 kHz to 1 GHz (maximum gain + minimum gain)/2.	0 dB ± 1.25 dB
Frequency response (relative to average gain)	
300 kHz to 1 GHz	± 1.25 dB
1 GHz to 3 GHz	± 2.5 dB
Average noise level	
	< 1 mV, 10 Hz to 10 MHz
Input voltage for < 1 dB compression	
	0.3 V

Supplemental Characteristics

	Description
Noise figure	2000p.101.
Below 100 MHz	< 50 dB
100 MHz to 3 GHz	< 25 dB
Pulse transition time	\ 20 dB
Tatoo transition time	200 psec
Distortion (at 0.3 V)	200 μουσ
Distortion (at 0.0 V)	<-30 dBc
Maximum rated input voltage	\ -00 dbC
Probe alone	± 1.5 V peak RF, ± 50 V DC
Probe with 10:1 divider	± 15 V peak RF, ± 50 V DC
	± 13 V peak Kr, ± 50 V DG
10:1 divider characteristics	0.7.5
Input capacitance	< 0.7 pF
Input resistance	1 ΜΩ
Input voltage for 1 dB compression	3 V
Power	
Supplied by certain Keysight instruments or Keysight power supply	+15 V/130 mA
(E3620A, E3630A, or E3631A, 85024A-001 required)	-12.6 V/45 mA
Weight	
•	Net 0.255 kg (0.563 lb)
	Shipping 1.49 kg (3.3 lb)
Dimensions	11 0 0, ,
	Probe assembly length
	1245 mm (49 in)

Accessories Furnished with the 85024A

	Description	
11880-60001	Type-N male adapter	
11881-60001	10:1 divider	
01123-61302	2.5-inch ground lead	
5060-0549	Spanner tip assembly	
8710-1806	Probe tip nut driver	
10229A	Hook tip	
	30 mil spare probe tips	
	12 mil spare probe tips	

